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Abstract

Background: The animal’s reaction to human handling, also known as temperament, is critical for work safety,

productivity, and welfare. Subjective phenotyping methods, such as docility score, have been traditionally

used in cattle production as a means for improving the safety, productivity, and welfare of animals. Even so,

subjective scales rely on the evaluator’s knowledge and interpretation of temperament, which may require

substantial experience. With that being said, selection based on such subjective scores may not precisely

impact temperament preferences in cattle.

Results: We investigated the statistical relationships among subjective methods including docility score (DS),

temperament score (TS), 12 qualitative behavior assessment (QBA) attributes along with a movement-based

objective method (four-platform standing scale, FPSS) including the standard deviation of total weight on

FPSS over time (SSD) and coefficient of variation of SSD (CVSSD) using 1,528 calves at weaning age. An

exploratory factor analysis (EFA) identified two underlying latent variables contribute to TS and 12 QBA

attributes that were named difficult and easy according to their characteristics. As DS is evaluated under

constraint and other measures are not, inclusion of DS in EFA of subjective methods was not a good fit.

A Bayesian confirmatory factor analysis inferred the factor scores of difficult and easy using the latent

structure discovered in EFA. This was followed by fitting a pedigree-based Bayesian multi-trait model using

difficult, easy, DS, SSD, and CVSSD to characterize the genetic interrelationships between subjective and

FPSS measures. The estimates of heritability range from 0.17 to 0.4 with the posterior standard deviation

averaging 0.06. The factors of difficult and easy exhibited a large negative genetic correlation of -0.92. DS

displayed a moderate genetic correlation with difficult (0.36), easy (-0.31), SSD (0.42), and CVSSD (0.34).

FPSS and DS were found to have a moderate genetic correlation with difficult (0.35 to 0.41) and easy (-0.39

to -0.31), indicating selection could be performed with either and have similar outcomes.

Conclusions: The application of genetic factor analytic model for temperament measures provided a new

approach to unravel the complexity of animal behaviors. In summary, we contend that FPSS measures could

increase the efficiency of genetic selection by providing automatic, objective, and consistent phenotyping

measures with a lower cost, and may potentially become an alternative of DS which has been widely used

in beef production.
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Background

Temperament in cattle traditionally refers to the animal’s behavior in the bail [1] or the reaction of animal

to human handling [2]. Previous studies have revealed cattle temperament has a significant relationship with

production, reproduction, immunity, and carcass traits [3–5], therefore genetic selection on temperament

provides an opportunity to improve production and efficiency in the beef industry. Temperament is a com-

plex trait that comprises various behavioral characteristics such as shyness-boldness, exploration avoidance,

activity, sociability, and aggressiveness [6]. A set of subjective methods were first proposed to phenotype

temperament, such as temperament scoring of cattle handled in a crush with head bail [1], flight distance [7],

docility test [8], chute test [9], and qualitative behavior assessment (QBA) [10]. These subjective methods

are able to integrate the various aspects of temperament into a single score and create a standardized test

by taking advantage of the experience and interpretation of the human evaluator on cattle. This is advanta-

geous for typical production operations due to ease of capturing data. Even so, closely working with cattle

may cause potential danger for evaluators during scoring. Furthermore, there is a concern with evaluation

bias in subjective methods, which makes comparison of temperament scoring methods across experiments

difficult. Due to this, measurements without human interpretation, such as exit velocity [11], movement-

measuring-device [12, 13], strain gauges [14], and objective chute score [15], have been tested to provide

objective and quantifiable temperament measurements. Understanding how these objective measures relate

to behavioral attributes is of interest, where most studies have only compared a few common subjective

methods with objective methods using a standard multi-trait model [11–13, 15]. Computational limitations

have also hindered further research in understanding relationship between objective and subjective methods

of temperament. Therefore, this study introduces a novel, potentially cost effective objective method using

a four-platform standing scale (FPSS) and investigates its relationship with subjective methods of docility

score (DS), temperament score (TS), and qualitative behavior assessment (QBA) attributes. The objective

of this study is to validate FPSS as measures of cattle temperament and decipher underlying genetic in-

terrelationships by joint analyses with subjective measurements using genetic factor analytic modeling. We

employed new statistical approaches, explanatory factor analysis (EFA) and confirmatory factor analysis

(CFA), to overcome the computational challenges due to a large number of correlated subjective measure-
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ments. To our knowledge, this is the first study to investigate the novel objective measurement FPSS using

EFA and CFA for the genetic analysis of cattle temperament.
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Materials and methods

Animals

From 2014 to 2017, data were collected at weaning time (late September to late October) at North Dakota

State University Central Grasslands Research Extension Center (CGREC) near Streeter, North Dakota.

Calves (n = 1, 528), including 749 heifers and 779 steers were scored at the weaning age (average age

was 161.0 +/- 17.0 d), were included for analysis. Calves were either sired by Angus bulls (all 4 yr) or

by Hereford bulls (3 yr) and were from Angus-influenced (all 4 yr) or Hereford by Angus-influenced (2 yr)

dams. Calves were assigned to one of two primary breeds (50% or greater) based on known breed percentages,

which resulted in 1,346 Angus- and 182 Hereford-based calves. A pedigree including 109,703 animals was

formed using the information of dams and records of complete ancestry for registered bulls provided by the

American Angus Association and American Hereford Association. All procedures involved in data collection

were reviewed and approved by the Institutional Animal Care and Use Committee of North Dakota State

University.

Experiment procedure

The details of temperament evaluation procedure during the first year data collection was previously de-

scribed by Hanna et al. [16]. All years of data collection followed the same procedure described except blood

draw grouping was not continued as it was found to have minimal effect on temperament scoring [16]. Briefly,

calves were moved through the working pens to the evaluation areas and then sorted to different holding

pens for management. Four evaluators were randomly assigned two of three subjective scoring methods (DS,

TS, and QBA) prior to evaluation and retained those methods each year of participation in the study. Some

evaluators were not able to return for all years of the study, which resulted in a total of 11 evaluators over

the 4 yr period. Averages for each subjective method that had at least three evaluator scores were used in

this study. DS is a six point scale where one and six refer to calm and aggressive, respectively [17]. The

evaluation of DS was done at the silencer chute with the head of the calf caught and each calf was evaluated

less than one minute. Following the evaluation of DS, weaning weight of the calf was recorded when its
7
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body was squeezed. Upon released from silencer chute, the calf then entered FPSS (Pacific Industrial Scale,

British Columbia, Canada) to collect the weight shifts on each quadrant. Following FPSS, TS and 12 QBA

attributes were evaluated in the outside testing area, while a single human handler calmly interacted with

the calf. The presence of this human handler was intended to facilitate evaluation of the different aspects of

these subjective methods. Following Sant’Anna et al. [10], TS is a five point scale, with a neutral scale three

removed, where one indicates calm and five indicates wild or aggressive. The 12 attributes of QBA consists

active, agitated, apathetic, attentive, calm, curious, distressed, fearful, happy, irritated, positive, and relaxed

[10], which can be grouped into groups of positive and negative behaviors. Each attributes was scored on a

136 mm line indicating the extent of expression, where the far left and far right refer to no expression and

complete expression of the attribute, respectively. Each calf was measured less than three minutes and then

sorted into a holding pen for management purposes. The average scoring of all evaluators was used for the

downstream analysis for DS, TS and 12 QBA attributes.

FPSS Measurements

The FPSS provides a novel method of quantifying cattle temperament while also weighing the animal (Figure

S1 in Additional File 1). The FPSS was connected to a computer controlled by a worker. Prior to the calf

entering the scale, the worker first enters the tag number of the calf. Once the calf is on the scale, the

worker starts recording weights on the four-platform for at least 45 seconds. The FPSS is able to record

approximately 15 records per second. The worker also keeps a log of any issues encountered with the calf,

large movements, and where those issues fall in the records. Following data collection, FPSS records of each

animal were reviewed for quality before used in subsequent analyses. To do this, the ideal start point for

a given animal’s scale records (i.e., when the animal is considered as completely standing on the scale)

was identified following Figure 1. Once the start point was identified, that point and subsequent 499 records

following were used to calculate the mean and standard deviation of the total weight. The standard deviation

of FPSS measurements (SSD) and the coefficient of variation of the SSD (CVSSD = SSD divided by mean)

were used as temperament scores for subsequent analyses. The CVSSD was calculated as there was concern

the actual weight of animal would bias the SSD as larger animals may naturally have larger standard

deviations in records.
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Exploratory factor analysis

We fitted EFA using subjective measurements including TS and 12 QBA attributes (t = 13). The logic of

using EFA is to discover the underlying latent variables or factors (q) to represent observed measurements.

Thereby, a network structure between latent variables and phenotypes was first explored and further used

for the downstream analysis. An EFA model is given as a function of latent factor scores

T = ΛF + ε, (1)

where T is a t×n phenotypic matrix, Λ is the t× q factor loading matrix, F is the q×n latent factor scores,

and ε is the t× n matrix of specific effects. The variance-covariance structure of T is

var(T) = ΛΦΛ′ + Ψ, (2)

where Φ is the variance of factor scores and Ψ is the variance of specific effects. With the assumption of

F ∼ N (0, I), a vector of phenotypes follows a multivariate Gaussian distribution ti
iid∼ N (0,Σ), where i

refers to ith individual and Σ = ΛΛ′ + Ψ. The log-likelihood of the factor analysis model is

L(Λ,Ψ|T) = −nq
2
log2π − n

2
log(Σ)− n

2
log(T′Σ−1T).

The number of underlying latent variables q was determined using a parallel analysis [18]. In brief, the

eigenvalues of the observed data and simulated data conditioned on the observed data were computed to

extract latent variables until the observed data had a smaller eigenvalue than the simulated data. Parameters

Λ and Ψ were estimated by maximizing the log-likelihood of L(Λ,Ψ|T) using an iteration method. We used

the R package psych [19] to fit EFA. We posited that DS may not align with other subjective measures since

it is collected in a confined setting, whereas other subjective measures used in this study were in a pen with

free movement. An additional EFA was fitted including DS to confirm this assumption.
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Bayesian confirmatory factor analysis

Using results from the EFA as a prior, a confirmatory factor analysis (CFA) under the Bayesian framework

was fitted following the procedure described in Yu et al. [20] to obtain factor scores. We assigned the following

priors for equations (1) and (2).

Λ ∼ N (0, 0.01)

Φ ∼ W−1(I22, 3)

Ψ ∼ Γ−1(1, 0.5).

The blavaan R package [21] coupled with the rstan R package [22] were applied to solve the Bayesian

CFA model. A Markov chain Monte Carlo (MCMC) with 6,000 samples and 3,000 burn-in was adapted to

infer the model parameters and in total three MCMC chains were sampled. The model convergence was

validated using the combination of trace plots and a potential scale reduction factor (PSRF) less than 1.2

[23]. A PSRF compares the estimated variances across chains and within the chain, where a large difference

indicates additional Gibbs samplings may be required. This was followed by calculating the factor scores (F)

of latent variables using the Gibbs samples. When factor scores are considered missing, the F is sampled from

a conditional distribution of p(F|θ,T) [24] using a data augmentation [25], where θ refers to the unknown

parameters Λ, Φ, and Ψ. The factor scores of latent variables were summarized from the posterior mean of

F and considered as new phenotypes in the downstream analysis.

Bayesian multivariate best linear unbiased prediction

We used a pedigree-based Bayesian multivariate best linear unbiased prediction model to perform genetic

analysis of SSD, CVSSD, DS, and latent variables.

Y = µ + Xb + Zu + ε,
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where Y is a vector of factor scores with individuals ordered within traits, X is the incidence matrix of

fixed effects, Z is the incidence matrix relating individuals with additive genetic effects, µ is the vector of

intercept, b is the vector of fixed effects, u is the vector of additive genetic effects, and ε is the vector of

residuals. The incidence matrix X included primary breed and sex following Hanna et al. [16]. The joint

distribution of u and ε follows a multivariate normal

u

ε

 ∼ N

0

0

 ,

Σu ⊗A 0

0 Σε ⊗ I


 ,

where A refers to the numerator relationship matrix, I is an identity matrix, Σu and Σε are genetic and

residual variance-covariance matrices, respectively. Flat priors were assigned to µ and b. Inverse Wishart

distributions with identity scale matrix and 5 degrees of freedom were assigned for Σu and Σe. The MTM R

package (https://github.com/QuantGen/MTM) was employed to infer the parameters in the Bayesian multi-

trait linear mixed model and obtain the posterior distribution of these parameters. This was followed by

estimating genetic correlations and heritabilities using posterior mean estimates from 10,000 Gibbs samples

with 3,000 burn-in and a thinning rate of 5. The model convergence was checked using the trace plots.
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Results

Phenotypic correlation

The phenotypic correlations between all subjective and objective measurements are displayed in Figure 2.

The subjective measurement TS showed a large positive correlation with active, fearful, agitated, irritated,

and distressed, whereas, a large negative correlation with relaxed, calm, and apathetic was found. Among

12 QBA attributes, we observed large positive correlations between similar attributes of temperament (e.g.,

relaxed and calm) and large negative correlations for opposite aspects of temperament (e.g., fearful and

calm).

Latent structure

The parallel analysis scree plot discovered the first two factors as latent groups (Figure S2 in Additional

File 1). The EFA loadings in Figure 3 further identified these two latent groups can be interpreted as

difficult (factor 1) and easy (factor 2) due to loading values. The descriptors difficult and easy were identified

because we observed factor 1 has higher loadings for negative temperament attributes (i.e., TS, active, fearful,

agitated, irritated, and distressed) and factor 2 has higher loadings for positive temperament attributes

(i.e., relaxed, calm, attentive, positive, curious, apathetic, and happy). According to Figure 3, we retained

the largest positive loadings for each latent variable (> 0.5). The final latent structure between factors

and phenotypes is shown in Figure 4. The EFA factor loadings including DS is displayed in Figure S3 in

Additional File 1. As expected, we found that both factors 1 and 2 have low loadings for DS.

The standardized factor loading coefficients and their posterior standard deviations from CFA assuming

latent structure shown in Figure 4 are presented in Table 1. The standardized factor loading coefficients

can be interpreted as regression coefficients. Overall, we found two factors have strong contributions to

13 subjective measurements. The factor difficult presented a positive strong loading to TS (0.861), active

(0.820), fearful (0.840), agitated (0.937), irritated (0.844), and distressed (0.607), suggesting difficult is a

comprehensive representation of undesirable aspects of temperament. The factor easy showed a positive
12
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strong loading to relaxed (0.968), calm (0.982), positive (0.636), curious (0.514), apathetic (0.761), and

happy (0.730), indicating an increase of easy can result in more desirable temperament.

Genetic relationships among temperament measure-

ments

The estimates of heritability (diagonals) and genetic correlation coefficients (off-diagonals) among SSD,

CVSSD, DS, and two factors are shown in Figure 5. The largest negative genetic correlation was observed

between difficult and easy with a posterior standard deviation of 0.02. In reference to DS, SSD, and CVSSD,

difficult and easy moderate genetic correlations with a posterior standard deviation of 0.16. Intuitively,

difficult had positive genetic correlations (Figure 5) with DS, SSD, and CVSSD indicating difficulty of

handling increased with increasing values of those variables, respectively. Likewise, easy had negative genetic

correlations with all three variables. The subjective measure of DS showed a positive genetic correlation with

objective measures SSD and CVSSD, along with a posterior standard deviation of 0.16 and 0.17, respectively.

Thus, a selection on DS measurement may also increase SSD and CVSSD measurements. The two objective

measurements SSD and CVSSD showed the largest positive genetic correlation with a posterior standard

deviation of 0.06. Among all five measurements, we found difficult and easy showed the largest heritability

estimates. The subjective measure DS showed larger heritability estimates than SSD and CVSSD. Heritability

estimates of SSD and CVSSD were similar. All heritability estimates had a posterior standard deviation of

about 0.06.
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Discussion

Temperament measurements

Previous studies reported the estimate of chute score heritability, similar with DS in this study, ranged from

0.11 to 0.34 [8, 26–28]. Burrow and Corbet [29] suggested the objective methods have higher heritabilities

than subjective methods. However, our findings show FPSS measures have slightly lower heritabilities than

subjective methods (Figure 5). Haskell et al. [5] reviewed the studies using objective method of flight speed

(exit velocity) and found it has a heritability ranges from 0.05 to 0.70. As suggested by previous studies, the

estimate of heritability varied with studies based on the population’s phenotypic variation, which could be

caused by the evaluation bias across experiments, different measurement protocols, and breed differences.

Most subjective measures have been found to have positive genetic correlations in previous studies. Grandin

[30] reported a positive correlation between docility test and chute test using Limousin cattle. A positive

genetic correlation between race score and crush score (0.530) was detected by Turner et al. [31] in Bos

taurus cattle. Sant’Anna and da Costa [10] discovered a positive genetic correlation between flight speed

and temperament index (0.49), which is the first principle component derived from QBA attributes in

principle component analysis. An analogous correlation has been detected in this study, where DS showed

a positive genetic correlation with difficult (0.36), and a negative genetic correlation with easy (-0.31) as

shown in Figure 5. Difficult and easy exhibited a large negative genetic correlation (-0.92) which is expected

based on the pattern of the temperament measures they loaded to. In this study, subjective methods of DS

and difficult displayed a moderate positive genetic correlation with objective measurements of SSD (0.42

and 0.41) and CVSSD (0.34 and 0.35). Turner et al. [31] reported the flight speed has a positive genetic

correlation with race score (0.210) and crush score (0.321). Parham et al. [32] found the exit score and exit

velocity capture the same temperament behavior based on a high genetic correlation (0.81). A moderate

genetic correlation between flight speed and chute test score has been reported by previous studies [28, 33].

These genetic correlations may vary with the differences in breeds, beef production system, evaluator design,

and/or the number of traits included in a multi-trait analysis. However, genetic correlations found in this

study are consistent with previous studies. DS used in this study, which is also known as chute score [30],
14
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has been widely used in the cattle industry due to its convenience. However, the application of DS is still

relying on the human evaluator, which suggests a lack of automation and consistency [34, 35]. Furthermore,

DS is the only measurement of temperament with the animal under a restrained condition in contrast

with other measurements. A poor loading from two factors in Figure S3 in Additional File 1 suggested DS

measures different aspects of temperament than other subjective methods. Therefore, we did not combine

DS with other subjective methods. Because DS and the two FPSS measures showed similar correlations

with difficult and easy latent variables, the use of FPSS over DS is preferred. This is because the FPSS

measures provide automatic, objective, accurate, and consistent measures of temperament. It is unlikely,

however, that replacement of current scales in cattle production will occur soon due to this. However, the

theory of using movement-based scores for temperament has been supported by Sebastian et al. [13] and

Bruno et al. [15], indicating that replacement of DS with a cost-effective movement-based measure is feasible

for genetic selection purposes. Even though DS and FPSS measures identify similar selection on difficult and

easy attributes based on pedigree, it is unclear if similar biological pathways or systems are being selected

on. Expanding this work to include molecular data is needed to clarify these relationships further.

Factor analytic model

Phenotypes are often correlated at the genetic level due to the pleiotropic effect or the linkage disequilibrium

among quantitative trait loci. The multivariate modeling has been widely used to model correlated structure

by taking the advantage of the genetic or environmental covariance between phenotypes [36, 37]. The standard

multi-trait approach has been proven to be useful for a trait with low heritability or having scarce records

[38]. However, it faces a computational challenge when the number of phenotypes included is large. Thus,

dimensional reduction methods play an important role in handling high-dimensional phenotypes.

One commonly used approach to study temperament measures is principal component analysis (PCA).

This approach calculates principal components (PCs) from a linear combination of observed phenotypes by

maximizing the total variance. Napolitano et al. [39] and Fleming et al. [40] applied PCA to analyze QBA with

the aim of studying dairy buffalo behavior and horse behavior during endurance ride, respectively. Sant’Anna

and da Costa [10] extracted the first principal component from QBA and used it as a new phenotype to

study cattle temperament. These studies all suggested traits associated with calm and agitated have a large
15
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contribution to the first principle component, which are two extreme characteristics of temperament. The

validity of PCs derived from PCA in capturing animal behaviors of both calm and agitated have been

supported by the significant correlations with other temperament methods in several studies [10, 41]. One

of the favorable features of QBA is its comprehensive description of temperament by measuring different

behaviors. However, the integration of all QBA attributes using PCs with extremely opposite measures (e.g.,

calm and agitated) may not be desirable because PCA maximizes the total variance, not the variance due

to the common signal among measurements. Consequently, selection for temperament based on PCs may

be accompanied by substantial risk. Thus, we employed factor analytic modeling for the first time to study

temperament measures, which provides a novel approach to investigate multi-phenotypes. The idea behind

factor analytic modeling is to represent the observed phenotypes using the unobserved latent variables or

factors by maximizing the common variance between correlated phenotypes. When the number of underlying

factors are unknown, it is possible to estimate from the data. For instance, de los Campos et al. [42] performed

multi-trait analysis using a factor structure under the Bayesian framework. Alternatively, we can apply a

CFA model, when the latent structure is assumed to be known. Penãgaricano et al. [43] investigated the

interrelationships of five latent variables extracted from 19 traits in swine using CFA. Similarly, a Bayesian

CFA combined with Bayesian Network was employed to characterize the wide spectrum of 48 rice phenotypes

in Yu et al. [20]. These studies determined the latent structure by leveraging the prior biological knowledge

between factors and phenotypes. Although the factor analytic model has been applied in animal and plant

breeding, there is still paucity of its application to a temperament research.

In this study, we leveraged the combination of EFA and CFA models to identify the mapping between

underlying factors and temperament measures, and performed genetic analysis of inferred factors scores.

The EFA model aims at estimating the degree of the contributions of factor to phenotypes, while cross-

loading (multiple factors contribute to the same phenotype) is allowed. Using the factor loading coefficients,

we inferred the latent structure by removing cross-loading. The combination of EFA and CFA modeling relied

on a data-driven method to detect the mapping between factors and phenotypes, which is a common case

in practice when prior biological knowledge is not available. In this study, we identified two factors difficult

and easy from TS and 12 QBA. This corroborates the findings from previous studies using PCA, where the

first principle component has been heavily influenced by both calm and agitated related traits [10, 39, 40].
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Conclusions
In conclusion, this study showed the validity of a novel cost-effective objective temperament measurement of

FPSS. FPSS and DS capture the same direction of behaviors with difficult, and opposite direction with easy.

We presented a combination of the factor analytic model and multivariate analysis that allows us to decipher

the interrelationships among temperament measurements. We contend that the multivariate factor analytic

model applied to the current cattle temperament study provides a new avenue to unravel the complexity of

animal behaviors.
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Table

Table 1: Standardized factor loading and corresponding posterior standard deviation from the Bayesian

confirmatory factor analysis.

Latent Variable Observed Phenotype Loading Posterior standard deviation

Difficult TS 0.861 0.007

Difficult Active 0.820 0.010

Difficult Fearful 0.840 0.008

Difficult Agitated 0.937 0.004

Difficult Irritated 0.844 0.009

Difficult Distressed 0.607 0.016

Easy Relaxed 0.968 0.002

Easy Calm 0.982 0.002

Easy Attentive 0.079 0.025

Easy Positive 0.636 0.015

Easy Curious 0.514 0.019

Easy Apathetic 0.761 0.011

Easy Happy 0.730 0.012
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Figures

Dataset	of	each	cattle	

Move to the
next ssp

Weight	records	across	
4	(or	3)	platforms	are	

all	>	0	kg	

abs	(𝑊𝑊""# −𝑊𝑊%)	
≤ 25	kg

pairwise	(𝑊𝑊""#	,	
𝑊𝑊""#()…𝑊𝑊""#(*)	

≤ 10 kg

Start point

Start

No

No

No

End

Yes

Yes

Figure 1: A flow of criteria to identify the start point of four-platform standing scale measurement. The abs

and pairwise refer to the absolute difference and pairwise absolute difference, respectively. WWssp denotes

the weaning weight at current suspected start point (ssp) and WWssp+i is the weaning weight at the following

ith point of ssp, where i = 1 to 5. WWr is weaning weight recorded in chute system.
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Figure 2: Phenotypic Pearson correlation coefficients between temperament measurements including temper-

ament score (TS), docility score (DS), 12 qualitative behavior assessment attributes, and movement-based

scores using four-platform standing scale standard deviation (SSD) and its coefficient of variation (CVSSD).
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temperament score (TS) and 12 qualitative behavior assessment attributes.
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Figure 4: The latent structure between two factors and 12 qualitative behavior assessment attributes.
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Figure 5: Genetic correlation estimates between latent variables (Difficult and Easy) and temperament

measurements including docility score (DS), standard deviation of total weight on scale over time (SSD),

and coefficient of variation of SSD (CVSSD). The diagonal elements are the heritability estimates.
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