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Abstract 20

Environmental association analyses (EAA) seek to identify genetic variants associated with local 21

adaptation by regressing local environmental conditions at collection sites on genome-wide 22

polymorphisms. The rationale is that environmental conditions impose selective pressure on trait(s), and 23

these traits are regulated in part by variation at a genomic level. Here, we present an alternative 24

multivariate genomic approach that can be utilized when both phenotypic and environmental data are 25

available for the population. This framework utilizes Bayesian networks (BN) to elucidate 26

interdependancies between local environmental conditions and empirical phenotypes, and jointly 27

estimates the direct and indirect genetic covariances between empirical phenotypes and environmental 28

conditions using a mixed-effects structural equation model (SEM). Direct genomic covariance between 29

empirical phenotypes and environmental conditions may provide insight into whether QTL that affect 30

adaptation to an environmental gradient also affects the observed phenotype. To demonstrate the utility 31

of this approach, we leveraged two existing datasets consisting of 55 climate variables for 1,130 32

Arabidopsis accessions and empirical phenotypes for fitness and phenology collected on 515 accessions in 33

two common garden locations in Europe. BN showed that plasticity for fitness and phenology was highly 34

dependant on local environmental conditions. Moreover, genomic SEM revealed relatively high positive 35

genomic correlation between plasticity in fitness and environmental variables that describe the 36

favorability of the local environment for plant growth, indicating the presence of common QTL or 37

independent QTL that are tightly linked. We believe the frameworks presented in this manuscript can 38

provide new insights into the genetic basis of local adaptation. 39
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Introduction 40

Identifying traits that confer adaptation to a given environment and elucidating the genetic determinants 41

driving variation for these traits is an important goal for physiologists, evolutionary biologists, and 42

quantitative geneticists. In many cases, particularly those working with agronomic species, these studies 43

involve large-scale phenotypic evaluations in multiple environments, which are later integrated with 44

genomic data using quantitative genetic frameworks. However, when the population is composed of 45

individuals sampled across an environmental gradient, information regarding local environmental 46

conditions at collection sites can be leveraged together with genomic data to identify genetic variants 47

associated with variation for a given environmental factor (Fournier-Level et al., 2011; Blanquart et al., 48

2013; Yoder et al., 2014; Tiffin and Ross-Ibarra, 2014; Hoban et al., 2016). In recent years, a number of 49

studies have employed similar approaches, termed environmental association analysis (EAA), to study 50

the genetic basis of local adaptation (Fournier-Level et al., 2011; Yoder et al., 2014; Lasky et al., 2015). 51

EAA seeks to identify genomic variants that are associated with variation in environmental 52

conditions at collection sites (Jones et al., 2013; Dell’Acqua et al., 2014; Yoder et al., 2014; Lasky et al., 53

2015; Anderson et al., 2016). The rationale for these approaches is that local environmental conditions 54

impose selective pressure on some trait(s), and these traits are regulated in part by variation at a 55

genomic level. Since adaptive traits should be correlated with local environmental conditions, regression 56

of environmental variables on genome-wide single nucleotide polymorphisms (SNPs) may yield markers 57

that are associated with environmental variables and, by proxy, adaptive traits. Several studies have 58

leveraged these, and similar approaches, to elucidate the genetic basis of local adaptation (Fournier-Level 59

et al., 2011; Yoder et al., 2014; Lasky et al., 2015). The only requirements for EAA is genomic data for a 60

georeferenced population and environmental variables recorded at, or close to, collection sites. 61

Downstream analyses or independent studies are performed to determine if these variants have an effect 62

on the phenotype, or whether they can be used to predict phenotypic variation. For instance, Yoder et al. 63

(2014) utilized a population of 202 wild Medicago truncatula accessions to identify genomic associations 64

with annual mean temperature, precipitation in the wettest month, and isothermality. They showed that 65

accessions with a greater number of alleles associated with high precipitation in the wettest month also 66

exhibited higher growth rate in a wet controlled environment. Similarly, Lasky et al. (2015) first 67

identified environment-genotype associations in a panel of Sorghum landraces, and used these 68

associations to predict agronomic characteristics in environments with contrasting moisture or edaphic 69

conditions. Thus, these studies provide evidence that EAA can recover genetic determinate that are 70

associated with environmental adaptation, and may influence phenotypic variation for adaptive or 71

agronomically relevant traits. 72

However, when both phenotypic and environmental data are available for the population, alternative 73

multivariate approaches can be utilized to jointly estimate genomic parameters and elucidate the genetic 74
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interrelationships between local environmental conditions and observable phenotypes. With these 75

approaches we can address whether there is a dependancy between the empirical phenotype and the local 76

environmental condition, effectively addressing the question “Is local adaptation to an environmental 77

variable dependant on this trait?” and “What genes have an impact on both local adaptation and the 78

empirical phenotype?” Structural equation models (SEM) are powerful frameworks that can be used to 79

model the interdependancies between multiple variables (Wright, 1921; Haavelmo, 1943). When 80

integrated into a quantitative genetics framework, these approaches allow quantitative genetic loci (QTL) 81

or total genomic values to be decomposed into direct and indirect effects based on a predefined graphical 82

model that describes directed relationships between variables (Gianola and Sorensen, 2004; Valente et al., 83

2013). SEM can be viewed as an extension of a conventional multi-trait (MT) quantitative genetic 84

framework (Valente et al., 2013). Whereas with MT approaches, covariances among observable 85

phenotypes are estimated and used to describe the symmetric linear relationships between variables, 86

SEM extends the multivariate framework to allow recursive (effects from one phenotype affects the 87

outcome of another) and simultaneous (reciprocal) structures among its variables by utilizing phenotypes 88

as predictors for other phenotypes (Goldberger, 1972; Bielby and Hauser, 1977). 89

In quantitative genetics, SEM has been largely applied to topics in animal breeding and genetics. For 90

instance in one of the first applications of SEM in quantitative genetics in the context of a linear mixed 91

model, de los Campos et al. (2006b) used SEM to elucidate the interrelationship between milk yield and 92

mastitis (inflammation of the udder quantified using somatic cell scores) in dairy cattle. The authors 93

showed that models where milk yield was dependant on mastitis were better supported by the data, 94

indicating that disease was the primary driver of reduced milk production rather than the converse. 95

Since this work, quantitative genetic SEM frameworks have been used to elucidate the genetic 96

interdependencies among meat quality traits, calving traits, fertility metrics, as well as milk yield and 97

mastitis in other species or breeds (de los Campos et al., 2006a,b; Varona et al., 2007; Wu et al., 2007; 98

König et al., 2008; Heringstad et al., 2009; de Maturana et al., 2009, 2010; Jamrozik et al., 2010; 99

Peñagaricano et al., 2015a,b). More recently, the SEM quantitative genetic frameworks have been 100

extended to perform genome-wide associations in chicken and rice (Momen et al., 2018, 2019). Given 101

that many EAA studies assume a causal relationship between an unobserved phenotype and the local 102

environment, SEM provides a framework where in these relationships can be explicitly encoded in the 103

model – when empirical phenotypes are available for the same population. Moreover, these frameworks 104

provide a means to examine the covariance in genetic effects that act directly on the empirical phenotype 105

and the environmental variable (Valente et al., 2013). 106

Direct applications of quantitative genetic SEM frameworks to EAA is not trivial. For one, SEM 107

requires a putative causal networks that describes the dependancies among and between environmental 108

variables and empirical phenotypes (Gianola and Sorensen, 2004). In most cases, these networks are not 109
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only unknown, but learning the structure may even be an objective of the study itself. Secondly, the 110

environmental data often consist of dozens or hundreds of variables that are highly correlated 111

(Ferrero-Serrano and Assmann, 2019; Lasky et al., 2015). Thus, prior to applying SEM to EAA we must 112

reduce the dimensionality of the environmental data and determine an appropriate network structure. 113

One popular approach for dimensional reduction is factor analysis (FA) (de Los Campos and Gianola, 114

2007). The underlying rationale for FA is that relationships among variables are due to some underlying 115

unobserved process. The goal of FA is to define a reduced set of unobserved, latent variables that 116

maximize the correlation among groups of related observed variables. In quantitative genetics, FA is 117

routinely applied to multi-environmental trials and high-dimensional multi-trait applications (Kelly 118

et al., 2007; Meyer, 2009; de Los Campos and Gianola, 2007; Runcie and Mukherjee, 2013; Yu et al., 119

2019). Thus, when applied to high dimensional environmental data, FA may yield a reduced set of 120

underlying variables that capture major patterns of local environments. When the underlying causal 121

structure is unknown, Bayesian network (BN) approaches can be utilized to elucidate the probabilistic 122

dependencies among variables (Scutari, 2009; Scutari and Denis, 2014). These dependencies are 123

expressed using a directed acyclic graph where each variable is depicted as a node and directed edges 124

join dependant nodes. Although BN approaches learn dependencies from the data itself, these 125

approaches can yield insightful information regarding the causal relationships among variables. Such 126

approaches have been leveraged to understand the genetic interdependencies among complex traits and 127

have been utilized to elucidate potential causal structures that can be used in SEM quantitative genetic 128

frameworks (Valente et al., 2013; Yu et al., 2019; Momen et al., 2018, 2019). Thus, both FA and BN can 129

be leveraged to reduce the dimensionality of local environmental variables and elucidate the relations 130

between traits or latent factors. 131

The objective of this study is to demonstrate the utility of SEM quantitative genetic frameworks for 132

studying the genetic interrelationships between local environmental conditions and empirical phenotypes 133

associated with fitness and phenology. To this end, we utilized two publicly available data sets that 134

describe environmental variables at collection sites for 1,130 diverse Arabidopis thaliana accessions, and 135

empirical phenotypes in two precipitation regimes at two common garden locations in Europe 136

(Ferrero-Serrano and Assmann, 2019; Exposito-Alonso et al., 2019). Several studies have shown that 137

adaptation is polygenic (Pritchard and Di Rienzo, 2010; Pritchard et al., 2010; Flood and Hancock, 138

2017). With this in mind, we sought to forego single marker inferences and instead predict total genomic 139

values for each individual, which are the cumulative additive genetic value for a given phenotypic 140

variable. We seek to decompose total genetic effects for these variables into direct and indirect effects, 141

effectively allowing us to address the following questions: ”Are genetic effects for empirical phenotypes 142

dependant on the genetic drivers for adaptation to local environmental conditions (and vice versa)?” and 143

”How much of the total genomic value for an empirical phenotype is due to genetic effects from upstream 144
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phenotypic variables?”. 145

7/34

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.11.873257doi: bioRxiv preprint first posted online Dec. 12, 2019; 

http://dx.doi.org/10.1101/2019.12.11.873257
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and Methods 146

Environmental variables 147

This study utilized a publicly available data set of local environmental conditions for 1,130 Arabidopsis 148

accessions. The original data, compiled by Ferrero-Serrano and Assmann (2019), consisted of 205 149

environmental variables for 829 unique collection sites. Categorical variables were removed from the data 150

set, as well as variables that had missing values in ≥ 20% of the accessions. After this filtering, 139 151

climate variables remained. Prior to FA, we removed variables that showed high collinearity, as variables 152

with very high correlation can interfere with factor analysis. In total, these quality control steps provided 153

data for 55 environmental variables for 1,130 accessions. 154

Empirical Phenotypes 155

Since the objective of the study was to examine the genomic interrelationships between local climate 156

conditions and phenotypic plasticity in contrasting environments, we sought a data set that provided 157

phenotypes recorded in the same germplasm in contrasting and ecologically-relevant conditions. To this 158

end, we used data from a recent study by Exposito-Alonso et al. (2019) in which 515 of the 1,130 159

accessions were phenotyped for fitness, germination time and flowering time in two locations within the 160

natural range of Arabidopsis thaliana and two simulated precipitation regimes. The experimental design 161

and collection of phenotypic data is explained in great detail by Exposito-Alonso et al. (2019). Briefly, 162

the 515 accessions were grown in open-ended rain-out shelters in Tuebingen, Germany and Madrid, 163

Spain. The open-ended design allows for the temperature and humidity conditions within the structure 164

to be similar to the natural environment. Within each location the plants were grown in a split-plot 165

design. Two simulated precipitation regimes, which were designed to mimic natural rainfall at Tuebingen 166

and Madrid, were randomly assigned to each subplot. The interquartile range for soil water content 167

(SWC) in the low-precipitation treatment was 11.38-22.51% with a median of 16.1% in Madrid and 168

10.76-20.09% with a median of 14.7% in Tuebingen. The interquartile range for the high precipitation 169

regime was 20.73-29.02% with a median of 24.6% in Madrid, and 22.62-33.00% with a median of 27.8% 170

in Tuebingen. Median midday photosynthetically active radiation (PAR) values inside the shelters were 171

45.7 mol·m−2·day−1 in Madrid and 30.9 mol·m−2·day−1 in Tuebingen. Temperatures outside the 172

structures ranged from 5.34-12.39◦C with a median of 8.5◦C in Madrid and 2.44-9.54◦C with a median of 173

5.6◦C in Tuebingen. These ranges are very consistent with temperatures recorded in the structures 174

(Exposito-Alonso et al., 2019). 175

We estimated the macroenvironmental sensitivity for each accession and each empirical phenotype

that was recorded by Exposito-Alonso et al. (2019) using the Finlay-Wilkinson (FW) approach (Finlay

and Wilkinson, 1963). FW essentially expresses the plasticity of an accession grown across multiple
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environments as a function of the overall population performance in each environment. The FW model is

given by

yij = µ+ gi + Ej + hiEj + eij

where yij is the phenotype for accession i in environment j, µ is the overall mean, gi is the main accession 176

effect, Ej is the main environment effect, hi is the slope for accession i on the overall environment means, 177

and eij is the residual for accession i in environment j. Here, yij are best linear unbiased estimates for 178

the accession effect in each environment from a model that accounts for systematic experimental effects 179

(Exposito-Alonso et al., 2019). The FW model was fit using the FW package in R (Lian, 2014). The slope 180

from this model was used as a metric for phenotypic plasticity in all downstream analysis. 181

Genotyping data 182

Imputed SNP markers were obtained for all 1,135 accessions from 1001genomes 183

(https://1001genomes.org/data/GMI-MPI/releases/v3.1/SNP_matrix_imputed_hdf5/) (Weigel 184

and Mott, 2009; Alonso-Blanco et al., 2016). We extracted marker information for the 1,130 accessions 185

with climate data, and removed SNPs with low minor allele frequencies (MAF < 0.05). Moreover, SNPs 186

in high linkage disequilibrium (LD) (r > 0.85) were removed using the PLINK indep function with a 50 187

SNP window, a step size of 5 SNPs, and a variance inflation factor (VIF) of 3.6. The VIF is computed as 188

1
1−r2 . Thus, a VIF of 3.6 corresponds to a r ≈ 0.85. After these filtering steps, 426,567 SNPs remained. 189

Factor analysis of environmental variables 190

To reduce the dimensionality of the 55 environmental variables, and define a reduced subset that 191

captures potential undefined/unobserved variables that give rise to the original covariance, we utilized a 192

combination of FA techniques, specifically exploratory and confirmatory factor analysis (EFA and CFA, 193

respectively). Factor analysis seeks to identify a smaller set of latent variables that capture the 194

underlying interrelationships between the original, manifest variables. The relationships between latent 195

and manifest variables is given by 196

Y = ΓF + s (1)

where Y is an t× n matrix of phenotypes with n = 515 indicating the number of accessions and t = 55 197

indicating the number of traits; F is an l × n matrix of factor scores that describe the values for each 198

latent factor (l) for each accession; Γ is an t× l matrix that shows how each trait (t) loads onto each 199

latent factor; and s is a t× n matrix that represents the specific effects for each trait and accession. 200

Thus, FA expresses a set of manifest variables as a function of common, latent factors. 201
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While both EFA and CFA are based on a similar framework, EFA allows manifest variables to load 202

onto multiple latent factors and CFA does not. Thus, EFA is most often used to determine the 203

appropriate number of latent factors and examine how manifest variables load on to them, and CFA is 204

used to test hypothesis regarding the relationships between manifest and latent factors and to estimate 205

factor loading scores. We determined the appropriate number of factors using parallel analysis. Parallel 206

analysis is a simulation-based method that was originally proposed by Horn (1965) to determine the 207

optimal number of latent factors. Briefly, parallel analysis randomly simulates data sets with similar 208

properties to the observed data and uses these data to extract eigenvalues. Scree plots are used to plot 209

and compare eigenvalues from the simulated data and eigenvalues from the observed data. The optimal 210

number of factors is determined as the maximum number of factors that have observed eigenvalues that 211

are larger than eigenvalues from simulated data. Parallel analysis was performed using the fa.parallel 212

function in the psych package R (Revelle, 2018). We used the minimum residual method with 1,000 213

iterations. Once the optimal number of factors was determined (11 latent factors), EFA was performed 214

using the factor analysis function, fa(), with varimax rotation and the minimum residual method with 215

1,000 iterations. 216

CFA was used to estimate factor scores for each accession and latent environmental variable. Since 217

CFA only allows manifest variables to load onto a single latent variable, we used EFA results to determine 218

which latent factor had the largest absolute loading for each manifest variable. Although EFA identified 219

11 latent factors, one latent factor was omitted from CFA because all manifest variables that loaded onto 220

this latent factor had higher loadings for other latent factors. CFA was fit using the sem package in R 221

according to the loadings provided in Figure 1 (Fox et al., 2017). Factor scores were computed with the 222

‘regression’ method using the fscores() function in the sem package (Fox et al., 2017). 223

Structure learning using Bayesian network 224

We next sought to elucidate the genomic interrelationships between plasticity and latent factor scores

from CFA for local environmental conditions following an approach described by Yu et al. (2019). To

this end, we first predicted genomic values for each accession and trait using a Bayesian multi-trait

model (MTM). The MTM is given by

Y = Xb + Zu + e

where Y is an n× t′ matrix of phenotypes composed of factor scores for latent environmental factors and 225

plasticity for empirical phenotypes (t′ = 13), where n = 515 is the number of individuals and t′ is the 226

number of phenotypes (ten latent local environmental variables and three empirical phenotypes, t′ = 13); 227

X and Z are incidence matrices that relate phenotypes to vectors of systematic effects (b) and additive 228

genetic effects u, respectively; and e is the error term. Moreover, we assume u ∼ N(0,Σu ⊗G) and 229

e ∼ N(0,Σe ⊗ In×n), where G is a genomic relationship matrix constructed following VanRaden (2008), 230
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Σu is a t′ × t′ covariance matrix for additive genetic effects. The MTM was fit using the MTM package in 231

R with 10,000 Markov chain Monte-carlo (MCMC) samples of which the first 2,000 are discarded and 232

every fifth sample was retained (de los Campos and Grüneberg, 2016). 233

Bayesian network (BN) learning approaches assume that the samples are independent. However, 234

when predicting additive genomic values using MTM, dependencies are between breeding values for 235

accessions are introduced from G. Therefore prior to BN learning, we followed an approach described by 236

Töpner et al. (2017) to remove dependencies. Briefly, G was decomposed into Cholesky factors by 237

G = LL′, where L is a lower triangle matrix with dimensions n× n. We define a nt′ × nt′ matrix, M via 238

M = It′×t′ ⊗ L. By multiplying the nt′ vector of genomic values (u) by the inverse of M, we are 239

provided with a vector of transformed genomic values (u∗ = M−1u) that follow a distribution given by 240

N(0,Σg ⊗ In×n). Thus, the transformed genomic values are independent between accessions. 241

BN are a class of graphical models that represent the probabilistic dependencies between a set of

random variables as a directed acyclic graph (G ) (Scutari and Denis, 2014). G is composed of nodes (V )

that represent random variables and edges (E) that depict probabilistic dependencies between nodes.

BN follow the Markov property, which states that given its parents, a node is conditionally independent

of all nodes that are non-descendants (Scutari and Denis, 2014). The joint probability distribution for k

random variables (XV = (X1, ..., Xk)) is given by

P (XV ) = P (X1, ..., Xk) =

k∏
V=1

P (XV |ΠXV
)

where parent nodes to Xv is indicated by ΠXV
(Scutari and Denis, 2014). 242

The vector of transformed genomic values (u∗) was used as input for BN learning using the bnlearn 243

package (Scutari, 2009). Structure learning was performed using four algorithms: hill-climbing (HC), 244

tabu-search, max-min hill-climbing (MMHC), and general 2-phase restricted maximization (RSmax2). 245

HC and tabu are score-based, greedy algorithms which seek to maximize the goodness-of-fit (i.e., network 246

score). These algorithms begin with an empty network structure and add, remove, or reverse edge each 247

edge until a maximum score is reached. The latter two algorithms, MMHC and RSmax2, are hybrid 248

learning algorithms, which essentially restrict the score-based approach described above on a subset of 249

nodes within the network (Tsamardinos et al., 2006). For each algorithm, we used a combination of 250

bootstrapping and model averaging to identity robust networks and quantify uncertainty in linkages and 251

the direction of each edge. Five hundred bootstrapping replicates were used and edges that were present 252

in less than 85% of the networks were removed, and the models were averaged. We compared networks 253

from each algorithm using the Bayesian information criteria (BIC) and selected the ‘best’ network 254

according to the network that produced the highest BIC since BNlearn rescales BIC values by -2. 255
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Genomic structural equation model 256

Work by Gianola and Sorensen (2004) provided a basis to introduce SEM into classical quantitative

genetics frameworks. SEM utilize a system of linear equations to model the interrelationships between

multiple dependant variables. Once introduced into the quantitative genetics frameworks pioneered by

Henderson (1984), these approaches provide a means to partition multiple phenotypes into direct and

indirect genetic components according to a predefined network structure (Gianola and Sorensen, 2004;

Valente et al., 2013; Bello et al., 2018). In matrix form, the structural equation model is given by

Y = ΛY + Xb + Zu + e

where all matrices are defined according to the MTM described above. However, note that the response 257

variable Y appears on both the right and left-hand side of the equation, meaning that some phenotypes 258

will serve as covariates for other phenotypes. The effect of an upstream phenotype on a downstream 259

phenotype is determined by the direction and magnitude of elements in the coefficient matrix (Λ). Λ is 260

typically a lower triangle matrix with zeros in the diagonal and upper triangle. We assume 261

u ∼ N(0,Σu0) ⊗G) and e ∼ N(0,Σe0 ⊗ In×n), where Σu0 and Σe0 represent the genomic and residual 262

covariances for total effects. 263

Given a simple, hypothetical causal structure for three phenotypes (y1 → y2 and y1 → y3), we can 264

decompose each phenotype into genetic and non-genetic components using the following system of 265

equations 266

y1 = Xb + Zu1 + e1

y2 = λy1→y2y1 + Xb + Zu2 + e2

y3 = λy1→y3
y1 + Xb + Zu3 + e3

Since y1 has no variables leading to it, the total genomic effects for y1 are given by u1total
= u1. For 267

y2 we have an indirect effect coming from y1, therefore the total genomic value is given by 268

u2total
= λy1→y2

u1 + u2. For y3, total genomic values are given by u3total
= λy1→y3

u1 + u3. Solving the 269

mixed model equation provides solutions for direct genomic values and estimates the genetic and residual 270

(co)variances for direct effects among traits (Σu0 and Σe0 , respectively). Covariances for total genomic 271

and residual effects can be computed through a simple transformation on the appropriate covariances 272

matrix for direct effects. The total genomic covariance is given by Σg = (It×t −Λ)−1Σu0(It×t −Λ)−1′. 273

We fit SEM using the ten latent environmental variables and the plasticity measures for three empirical 274

phenotypes according to the learned structure described above. The model was fit using the MTM package 275

with 10,000 MCMC samples with the first 2,000 samples discarded and every fifth sample retained 276

(de los Campos and Grüneberg, 2016). 277

12/34

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.11.873257doi: bioRxiv preprint first posted online Dec. 12, 2019; 

http://dx.doi.org/10.1101/2019.12.11.873257
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data availability 278

Local environmental variables were obtained from the Arabidopsis ClimTools repository 279

(https://github.com/CLIMtools) (Ferrero-Serrano and Assmann, 2019), and empirical phenotypes for 280

common garden locations were obtained from Exposito-Alonso et al. (2019). Scripts used for analyses of 281

these data are available Arabidopsis EFA repository 282

(https://github.com/malachycampbell/ArabidopsisEFA) and are documented to ensure 283

reproducibility. Supplemental figures and files are available at FigShare (). 284
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Results 285

To examine the genomic relationship between local environments across the native range of Arabidopsis 286

thaliana we utilized a publicly available panel of 1,135 diverse Arabidopsis accessions. These materials 287

were collected from 829 non-redundant sites across Europe, Asia, Africa and N. America, and are 288

discussed in detail by Ferrero-Serrano and Assmann (2019). The collection site for each accession is 289

provided as Supplemental Figure S1. We utilized an existing dataset of 205 climatic, edaphic, and 290

remote sensing variables to characterize the local environmental conditions at each of the collection sites. 291

These variables describe precipitation, temperature, and vegetative productivity patterns, as well as soil 292

physical and chemical characteristics (Ferrero-Serrano and Assmann, 2019). 293
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Figure 1. Factor loadings for manifest local environmental variables. Variables in bold type

face are latent factors identified using factor analysis, while nodes emanating from these are manifest

environmental variables. Edges colored in grey indicate the manifest variable has a positive loading on

the latent factor, while those in red indicate negative loadings.
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Factor analysis reveals the underlying structure of local environments 294

An initial inspection of the environmental variables showed a high degree of correlation between variables 295

(Supplemental Fig. S2). Given the size of the data set, as well as the high degree of correlation between 296

variables, we sought to reduce the 55 variables to a smaller set of factors that capture the underlying 297

theoretical structure of the environments. To this end, we performed EFA on the set of 55 variables to 298

explore the underlying structure of local environmental conditions and define a reduced set of variables 299

that capture unobserved processes (latent factors) that drive these relationships. Confirmatory factor 300

analysis was used to determine the contribution of each environmental variable to the latent factor and 301

quantify how each accession contributed to each latent factor. EFA revealed that the 55 variables could 302

be reduced to a set of 11 latent factors (Supplemental Fig. S3). Although 11 latent factors were defined, 303

variables loading onto factor 11 had stronger loading on other latent factors. Thus this latent factor was 304

omitted from downstream analysis. The loadings from EFA are provided as Supplemental File S1. 305

In theory, these latent factors should represent unobserved processes that give rise to the observed 306

variables, and in the context of the current study, may describe processes that shape local environments. 307

Factor loadings from CFA are shown in Figure 1. A complete listing of latent factors, the manifest 308

variables that load onto them, and the interpretation of latent factors is provided in Supplemental File 309

S2. Twelve environmental variables loaded onto the second latent factor (MR2). The manifest variables 310

describe the frequency of wet days, cloud coverage, solar radiation, precipitation seasonality and 311

precipitation of the driest quarter. Variables associated with precipitation and cloud cover largely 312

showed positive contributions to MR2, while those associated with solar radiation showed negative 313

contributions. Thus, MR2 is likely a description of how bright and dry an environment is. Three latent 314

factors were defined which captured the favorability of local environments to plant growth. For instance, 315

two metrics for vegetation condition index (VCI) which quantifies vegetation cover in a period of time to 316

relative extremes and vegetative health index (VHI) that represents the favorability of the environment 317

for vegetation activity showed positive loadings onto onto MR7. Moreover, the two manifest variables 318

that represent temperature condition index (TCI) which loaded positively onto MR6. While MR6 and 319

MR7 are largely associated with indices that describe the potential impact of environmental conditions 320

on plant health, MR5 captures the productively of the environment as manifest variables associated with 321

gross primary productivity, evapotranspiration, normalized difference vegetation index, and net primary 322

productivity were loaded onto this latent factor. Several other latent factors were identified that 323

captured precipitation patterns at each local environment. For instance, the ninth latent factor (MR9) 324

largely captures precipitation and precipitation variability between years. Environmental variables 325

representing the amount of precipitation in the wettest month, precipitation in the spring, and 326

interannual precipitation showed strong positive contributions to MR9. 327
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Examining plasticity in fitness and phenology in contrasting environments 328

The ability of plants to exhibit plasticity in phenotypic traits is important strategy for adaptation to 329

environmental constraints. With this in mind, we sought to elucidate the genetic interrelationships 330

between plasticity in phenological traits and fitness, and local environmental characteristics. We utilized 331

an existing dataset consisting of phenological (time to germination and flowering) traits and fitness 332

recorded on 515 diverse Arabidopisis accessions grown in common garden experiments in Tuebingen and 333

Madrid (Exposito-Alonso et al., 2019). At each common garden location, accessions were grown under 334

simulated high and low rainfall conditions, with high rainfall conditions mimicking the natural 335

precipitation in Tuebingen and low rainfall conditions mimicking the precipitation at Madrid 336

(Exposito-Alonso et al., 2019). 337

The distribution of phenological and fitness traits at each precipitation-location combinations are 338

shown in Figure 2. Significant differences between precipitation-location combinations were observed for 339

fitness and flowering time (p < 0.0001). In general, accessions flowered later at Tuebingen compared to 340

Madrid, while low precipitation seemed to delay flowering in both locations indicating that temperature 341

and daylength differences between locations may be the largest driver of differences in flowering time 342

between locations. In general, the accessions exhibited higher fitness in the two high-rainfall treatments 343

compared to low rainfall treatments. Fitness was highest for the high rainfall treatment in Madrid, while 344

the low precipitation treatment at Madrid showed the lowest average fitness. The environment in the 345

high rainfall treatment at Madrid is characterized by simulated rainfall that is similar to the natural 346

precipitation at the common garden location in Tuebingen. Thus, the ample water availability (27.8% 347

SWC) combined with the warm temperatures (median temperature 8.5◦C) in Madrid are highly 348

favorable for growth and reproduction in Arabidopsis. However, when warm temperatures are combined 349

with inadequate rainfall (16.1% SWC), the overall performance is reduced greatly, as observed for the 350

low average fitness observed in low precipitation in Madrid (Ml). 351

To estimate environmental plasticity for fitness and phenological traits, we estimated reaction norms 352

for each accession using the FW approach (Finlay and Wilkinson, 1963). Briefly, the FW approach 353

expresses the plasticity for each individual grown across a range of environments as a function of the 354

average population performance at each environment. For each individual, the slope of the linear model 355

expresses the plasticity (or macroenvironmental sensitivity) with respect to average plasticity of the 356

population. The plasticity for each accession with respect to mean performance at each environment is 357

shown in Figure 2D-F. 358
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Figure 2. Distribution and plasticity of fitness and phenological traits across contrasting

environments. (A-C) Distribution of adjusted means for fitness and phenological traits. Median values

for environmental conditions within shelters are shown beneath each boxplot. Temp refers to median

temperature in ◦C, SWC indicates soil water content, and PAR refers to photosythetically active radiation

(mol m−2 day−1). The predicted phenotypic values (ŷ) of each accession in each location-treatment

(Loc-Trt) combination is shown in panels D-F and were obtained using the FW approach. ‘M’ refers to

common garden in Madrid and ‘T’ indicates common garden in Tuebingen, while the subscripts L and H

refer to the low and high precipitation treatment, respectively.

Elucidating genetic dependencies between local environmental factors and 359

fitness related traits 360

To elucidate the genetic interdependencies between local environmental conditions, and fitness and 361

phenological plasticity, we inferred the potential causal genetic relationships between environmental 362
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factors and observed phenotypes using four BN structure learning algorithms. Structure learning was 363

performed using the ten latent environmental factors described above and reaction norm slopes for 364

phenological traits and fitness, and the “best” structure was selected based on BIC scores. Of the four 365

algorithms evaluated, the “best” network was given by tabu algorithm (Table 1). Since the primary 366

objective of this study is to elucidate the relationships between local environmental conditions and 367

empirical phenotypes, we focused interpretations of the network on relationships within the Markov 368

blanket for plasticity traits (Figure 3). 369

Table 1. Evaluation of four Bayesian structure learning algorithms. Bayesian network struc-

tures were learned using the ten latent environmental variables and plasticity for phenological traits

(germination and flowering time) and fitness. The “best” network was selected based on the highest

Bayesian information criteria (BIC) and Gaussian BIC values (gBIC). Algo.: algorithm; HC: hill-climbing;

MMHC: min-max hill-climbing; RSmax2: general 2-phase restricted maximization

Algo. gBIC BIC

HC -1963.02 -1963.02

tabu -1962.58 -1962.58

MMHC -2480.54 -2480.54

RSmax2 -2681.40 -2681.40

Although the learned structure is complex, several interesting features are apparent. First, of the 29 370

edges in the network, 41.4% (12 edges) describe relationships from environmental variables to empirical 371

phenotypes, while only 3.45% (1 edge) describe relationships from plastic responses to environmental 372

variables. These results suggest that genomic values for empirical phenotypes are highly dependant on 373

genetic factors associated with adaptation to local environmental conditions. In addition, 51.7% edges 374

(15 edges) were from environmental variables to other environmental variables, and only a single edge 375

was from plastic responses to other plastic responses. Thus, genetic relationships between environmental 376

variables or plastic responses are far more common than relationships from plastic responses to 377

environmental variables. 378

In addition to overall topological features of the BN, several nodes were identified that were heavily 379

influenced by other variables. For instance, plasticity in flowering time (FT) showed the largest number 380

of indirect effects, suggesting that plasticity in flowering time is highly dependant on genetic effects from 381

adaptation to local environments. A total of seven variables were leading to FT, while three were leading 382

to both plasticity in germination time (GT) and fitness (Fit). Several variables were identified that had 383

indirect effects on many variables. For instance, MR5 and MR9, which describe overall plant 384

productivity, and precipitation and interannual precipitation variability, respectively, each showed 385

indirect effects on four nodes. 386
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Figure 3. Visual depiction of probabilistic dependancies between environmental variables

and empirical phenotypes. The network shown in panel A depicts the Markov blanket for empirical

phenotypes and the full network is shown in panel B. A model averaging approach with 500 bootstrap

samples was used to learn Bayesian network. The two numbers above each directed edge in panel A

shows the proportion of bootstrap samples with the given edge and the proportion of samples with the

given direction. The environmental variables are indicated with the “MR” prefix, while the empirical

phenotypes are defined as follows: Fit: fitness plasticity; FT: flowering time plasticity; GT: germination

time plasticity.

Structural equation modeling 387

The BN described above represents the probabilistic dependencies between plastic responses and local 388

environmental conditions (Scutari and Denis, 2014). While this approach may provide insights into how 389

variables act on one another, it does not tell how much of an effect one variable has on another. To 390

estimate the magnitude of direct (QTL acting directly on focal trait) and indirect (QTL effects 391

transmitted on focal trait by upstream trait) relationships among variables, we performed SEM using the 392

learned structure described above. We leveraged this approach to decompose total genomic values for 393

each environmental variable and empirical phenotype into direct and indirect effects, and examine the 394

covariance between total genomic values and direct genomic values. The matrix of structural equation 395

coefficients is shown in Table 2, and the genomic correlation matrix of direct and total effects is shown in 396

Figure 4. 397

The utilization of plastic responses for phenological traits was motivated by several studies that 398

suggest changes in an individual’s life cycle may be an important mechanism for adaptation to specific 399
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Figure 4. Genomic heritability and correlation for direct and indirect genetic effects The

genomic heritability for total additive genetic effects (h2) are shown in the diagonal. The upper triangle

of the matrix shows the genomic correlation for total effects, while the lower triangle shows the genomic

correlation for direct genetic values. Fit: fitness plasticity; FT: plasticity in flowering time; GT: plasticity

in germination time

environmental constraints (Anderson et al., 2012; Vitasse et al., 2013; Augspurger, 2008; Chuine, 2010). 400

While total genomic covariances provide insight into the relationships between total genetic values for 401

two phenotypes, examination of the direct genomic covariances between traits may be more important in 402

the context of the current study, as the covariance of direct genomic effects is driven by QTL that have 403

an effect on both environmental adaptation and plasticity or QTL that affect each trait independently 404

but are in tight LD (Valente et al., 2013). For direct genomic effects, the strongest positive genomic 405

correlation between plastic responses and environmental variables was observed for Fit and MR6 406

(rgdirect = 0.24), which is a composite of temperature conditioning indices with lower values indicate a 407

potential for high temperature stress on vegetative biomass. Fit also showed positive direct genomic 408

correlation with MR7 (rgdirect = 0.18), a variable composed of indices quantifying plant health, and MR9 409

(rgdirect = 0.13), which quantifies precipitation and interannual variability in precipitation. Collectively, 410

these results indicate that the accessions that harbor alleles for reduced sensitivity of fitness to 411

temperature gradients likely also harbor alleles associated with adaptation to warm, low rainfall 412

environments. 413

In addition to Fit, relatively strong positive direct genomic correlation was observed between FT and 414

MR9 (rgdirect = 0.20), as well as GT and MR5 (rgdirect = 0.21). However, the slope for FT largely 415

represents the sensitivity of flowering time to differences in photoperiod and/or temperature for an 416

accession, with lower values indicating more similar flowering times between common garden locations. 417
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Table 2. Structural coefficients estimated using structural equation modeling. Path coeffi-

cients for network structure pictured in Figure 3 was estimated using a structural equation modeling

approach. The columns indicate upstream nodes, while the rows indicate downstream nodes. Elements

with ‘-’ indicate pairs of nodes that are not linked by an edge. Coefficient matrices for structures learned

using a Bayesian network approach are typically have zero elements in the diagonal and upper triangle,

however the coefficient matrix below has been reordered so that environmental variables are grouped and

ordered by name. Fit: fitness plasticity; FT: plasticity in flowering time; GT: plasticity in germination

time. Variables with the ‘MR’ prefix indicate latent environmental variables.

MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9 MR10 GT FT Fit

MR1 - 0.35 -0.31 -0.47 - 0.13 - 0.6 -0.23 -0.18 - - -

MR2 - - - - - - - - - - - - -

MR3 - - - - - - - - -0.17 - -0.2 - -

MR4 - - - - - - - 0.38 - - - - -

MR5 - - - - - - - - - - - - -

MR6 - - - 0.23 -0.43 - 0.81 - - - - - -

MR7 - - - - - - - - - - - - -

MR8 - - - - - - - - - - - - -

MR9 - - - - - - - - - - - - -

MR10 - - - - -0.33 - 0.12 0.41 - - - - -

GT - - - 0.01 0.18 - - - - 0.1 - - -

FT - - - - - 0.13 -0.06 - 0.31 - - - -

Fit - 0.1 -0.01 - 0.13 0.34 - - 0.13 -0.19 - 0.11 -

Therefore, it is unclear whether the non-zero direct genomic covariance between these variables indicates 418

a common mechanism, or potential confounding of photoperiod insensitive accessions originating from 419

more southern locations. 420
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Discussion 421

Environment association analyses have become popular approaches to elucidate the genetic basis of local 422

adaptation in the absence of fitness measurements in multilocation common garden trials (Fournier-Level 423

et al., 2011; Yoder et al., 2014; Lasky et al., 2015). The aim of EAA is to identify genes or loci that may 424

impact traits that confer fitness along an environmental gradient. However, when fitness is measured in 425

multiple common garden locations along an environmental gradient, the change in fitness as a function of 426

mean population performance provides a single metric that describes the impact of the environment on 427

fitness. Moreover, when this metric is introduced as the response variable in genome-wide association 428

studies, strong associations indicate the presence of gene(s) that may influence fitness along the 429

environmental gradient. 430

In the current study, we seek to integrate both data types in the SEM framework to examine the 431

genetic interdependencies and covariances between changes in fitness and phenology in multiple 432

environments and local environmental conditions. However, whereas most EAA estimate the effects of 433

individual loci, we predict the total genetic values (i.e. the summation of QTL effects for a given 434

genotype) for each variable. Thus, in cases where collection sites and common garden locations follow the 435

same gradients, we expect covariance in genetic signals that impact both variables directly. Consistent 436

with this expectation, we observed non-zero genetic covariance between local environmental conditions 437

and changes in fitness between common garden locations. For instance, Fit showed positive correlation of 438

direct genetic effects for MR6, as well as MR7. The latent variables MR6 and MR7, capture the 439

favorably of the local environment for plant growth. Thus, higher values indicate environments that have 440

favorable conditions for plant growth and, on a whole, are highly productive. Moreover, Fit describes the 441

changes in fitness driven largely by water availability, with higher values indicating greater fitness in 442

high-rainfall treatment in Madrid and low values indicating low fitness in low-rainfall treatment in 443

Madrid (Figure 2). Thus, the positive genomic correlation of direct effects indicates that accessions 444

harboring alleles for high fitness in simulated, high-productivity environments will also tend to harbor 445

alleles associated with adaptation to highly productive local environments. Although weaker than the 446

direct genomic correlation for MR6 and MR7, Fit also showed positive genomic correlation with a latent 447

environmental variable that largely captured precipitation and precipitation variability of the local 448

environment, with higher values indicating higher precipitation (MR9; rgdirect = 0.13). Collectively, these 449

results indicate that fitness in response to some local environmental conditions may be regulated common 450

genetic mechanisms that affect fitness in simulated environments. However in either case (e.g., local 451

environment associations or common garden fitness), the traits that impact fitness are largely unknown. 452

Phenotypic plasticity is an important process that allow plants to quickly modify physiology, 453

morphology, or phenology in response to changes in the environment (Bradshaw, 1965). Individuals that 454

exhibit greater plasticity may be better positioned to respond to new environmental constraints, as novel 455
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phenotypes bought on by environmental change may provide persistence in the short-term 456

(West-Eberhard, 2005; Matesanz et al., 2010; Nicotra et al., 2010; Valladares et al., 2014). However, 457

phenotypic plasticity is not always advantageous (DeWitt et al., 1998; Ghalambor et al., 2007). For 458

instance, Scheepens and Stöcklin (2013) showed that increased temperature leads to early flowering, but 459

reduced seed set in Campanula thyrsoides. Thus, it is important to couple observations of plasticity 460

across an environmental gradient with measurements of fitness in the same environments to determine 461

whether phenotypic plasticity can be a mechanism underlying fitness. Here, we utilized measures of 462

fitness and empirical phenotypes in four environments. Correlations for reaction norms for fitness and 463

phenological traits showed a significant, albeit weak, correlations between Fit and GT (r = −0.09, p = 464

0.417) and Fit and FT (r = 0.18, p < 0.0001), indicating that these changes in fitness are associated 465

with changes in phenology. In the case of FT, the positive correlation indicates that accessions that show 466

greater plasticity in flowering time (positive slope for FT meaning delayed flowering in Germany relative 467

to Madrid) tend to exhibit greater fitness in high-precipitation regimes relative to low-precipitation 468

regimes (i.e., positive slope for Fit). Correlation provides a simple means to measure the relationships 469

between two traits within a population. However, a non-zero correlation does not necessarily indicate 470

that the outcome/expression for one characteristic is dependant on another. BN approaches on the other 471

hand, have been developed to elucidate probabilistic dependencies among a group of interrelated 472

variables (Pearl, 2014; Scutari and Denis, 2014). The BN shown in Figure 3 shows an directed edge from 473

GT to Fit, indicating that changes in fitness across the common garden environments is dependant on 474

changes in germination time. However, no edges were found between FT and Fit, indicating that 475

although these two characteristics covary, changes in Fit may not be dependant on changes in FT. 476

Although it is seemingly a natural tendency to view these dependencies as causal relationships, it is 477

important not to over interpret results from BN. While BN are a powerful approach to assess the 478

interdependencies between variables, structure learning with BN imposes several constraints that may 479

limit its applications in biology. One major limitation is that BN do not allow feedback loops or cyclical 480

relationships in the structure, which are pervasive throughout biology especially at a molecular level 481

(Scutari and Denis, 2014). Thus, if the underlying causal relationships between traits involves feedback 482

loops, the structure learned with BN will likely be inaccurate (Valente et al., 2013). Thus, the network 483

might reflect highly probable relationships between variables, but may not represent the true causal 484

relationships that give rise to the data. Secondly, in the current study, BN were constructed using a 485

mixture of observational and experimental data. In the absence of randomization, dependencies observed 486

in Bayesian networks constructed using observational data may be driven by unobserved confounders, 487

thereby making causal claims based on the data problematic (Bello et al., 2018, see for review). 488

Nevertheless, causal relationships can be learned from the data and should be used to generate 489

hypothesis for further studies. In our study, BN revealed dependencies between plasticity in fitness and 490
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several environmental variables. Fitness in a given environment is largely the consequence of a trait or 491

traits that confer adaptation to a set of environmental conditions. In other words, fitness is not a 492

mechanism for local adaptation, but rather is a measure of adaptation. Thus, we expect that fitness in a 493

given location/precipitation regime should be highly dependant on mechanisms that were selected by 494

environmental pressures in the accessions’ local environments, and this expectation is largely confirmed 495

by the network learned from the data (Figure 3). However, covariance in direct effects for other variables, 496

such as between FT and MR9, may not be so easy to explain. The latent environmental variable MR9 497

largely captures precipitation and precipitation variability, as the manifest variables spring precipitation, 498

precipitation of the wettest month, and interannual precipitation variability load onto MR9. The positive 499

direct covariance between MR9 and FT suggest that accessions that harbor alleles associated with 500

adaptation to environments with high precipitation will also tend to harbor alleles associated with higher 501

plasticity in flowering time. However, plasticity in flowering time is largely driven by differences in day 502

length and temperature between common garden locations rather than by precipitation regimes (Figure 503

2). Thus, it is questionable whether the direct genomic covariance is due to QTL that affect adaptation 504

to precipitation gradients and the sensitivity of flowering time to photoperiod and/or temperature, or if 505

this is driven by unaccounted, confounding effects within the data. Projection of phenotypic values for 506

FT on collection sites show clusters of accessions originating from the Northern Iberian peninsula and 507

Southern Sweden with low plasticity for flowering time (Supplemental Figure S4). Moreover, these 508

regions also exhibit low values for MR9. Further studies or alternative experimental designs are necessary 509

to determine whether this covariance is due to common effects on adaptation to precipitation gradients 510

and plasticity in FT, or are due to sampling bias. Thus, while BN can provide important insight into the 511

interrelationships between traits, when these networks are constructed using observational data we 512

should view these results with caution rather than to discount inferred relationships as spurious. 513

While BN describe the probabilistic dependencies among variables, they only provide insight into the 514

structure of relationships in the data. In many cases, we are interested in understanding how genetic 515

effects for an upstream trait affect the outcome of a downstream trait. SEM provides a means to 516

estimate path coefficients according to a predefined network structure, as well as partition phenotypic 517

values into genetic values that affect a trait directly (i.e., direct genetic values) and genetic values that 518

are due to genetic effects acting directly on upstream variables (Gianola and Sorensen, 2004; Valente 519

et al., 2013). In some sense, estimates of the structural coefficients may seem like the most attractive 520

component of SEM, as these describe how intervention on an upstream variable (e.g., a latent 521

environmental variable) will impact the outcome of the downstream variable (e.g., empirical phenotype) 522

given the direct effects for the downstream variable remain unchanged (Gianola and Sorensen, 2004). 523

However in the current study, we have data that is a combination of latent environmental variables and 524

empirical phenotypes. Thus, a more biologically meaningful question is whether QTL that have a direct 525
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effect on adaptation to an environmental gradient also have a direct impact on some observable 526

phenotype. Non-zero covariance in direct effects between local environmental conditions indicates the 527

presence of common QTL, or independent QTL that are tightly linked (Valente et al., 2013). Thus, 528

identification of such QTL can provide important insights into the common mechanisms that impact 529

adaptation to local environments and plasticity. 530
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Figure S1. Geographic locations for all 1,035 Arabidopsis accessions. The locations for 1,035

accessions used to define latent environmental variables.
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Figure S2. Heatmap for 55 manifest environmental variables. Spearman’s method was used to

generate the correlation matrix.

33/34

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2019.12.11.873257doi: bioRxiv preprint first posted online Dec. 12, 2019; 

http://dx.doi.org/10.1101/2019.12.11.873257
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 10 20 30 40 50

0
2

4
6

8
1

0
1

2

Parallel Analysis Scree Plots

Factor Number

e
ig

e
n

 v
a

lu
e

s
 o

f 
p

ri
n

c
ip

a
l f

a
c
to

rs   FA  Actual Data
  FA  Simulated Data
 FA  Resampled Data

Figure S3. Scree plot indicting the optimal number of latent factors for 55 environmental

variables. Parallel factor analysis was performed using the psych package in R. This approach generates

scree plots for the observed data and compares the results with scree plots generated from a random

data matrix of the same size as the observed data set.
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Figure S4. Projection of phenotypic values for flowering time plasticity on collection sites

for 515 accessions. Higher plasticity values indicate a greater delay in flowering time Tuebingen relative

to Madrid, and is indicated by the continuous color scale on the right. The red ‘X’ indicates the two

common garden locations.
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